Trend Analysis and Forecasting the Spread of COVID-19 Pandemic in Ethiopia Using Box-Jenkins Modeling Procedure.

Please login or register to bookmark this article
Bookmark this %label%

COVID-19, which causes severe acute respiratory syndrome, is spreading rapidly across the world, and the severity of this pandemic is rising in Ethiopia. The main objective of the study was to analyze the trend and forecast the spread of COVID-19 and to develop an appropriate statistical forecast model.Data on the daily spread between 13 March, 2020 and 31 August 2020 were collected for the development of the autoregressive integrated moving average (ARIMA) model. Stationarity testing, parameter testing and model diagnosis were performed. In addition, candidate models were obtained using autocorrelation function (ACF) and partial autocorrelation functions (PACF). Finally, the fitting, selection and prediction accuracy of the ARIMA models was evaluated using the RMSE and MAPE model selection criteria.A total of 51,910 confirmed COVID-19 cases were reported from 13 March to 31 August 2020. The total recovered and death rates as of 31 August 2020 were 37.2% and 1.57%, respectively, with a high level of increase after the mid of August, 2020. In this study, ARIMA (0, 1, 5) and ARIMA (2, 1, 3) were finally confirmed as the optimal model for confirmed and recovered COVID-19 cases, respectively, based on lowest RMSE, MAPE and BIC values. The ARIMA model was also used to identify the COVID-19 trend and showed an increasing pattern on a daily basis in the number of confirmed and recovered cases. In addition, the 60-day forecast showed a steep upward trend in confirmed cases and recovered cases of COVID-19 in Ethiopia.Forecasts show that confirmed and recovered COVID-19 cases in Ethiopia will increase on a daily basis for the next 60 days. The findings can be used as a decision-making tool to implement health interventions and reduce the spread of COVID-19 infection.

View the full article @ International journal of general medicine
Get PDF with LibKey

Authors: Yemane Asmelash Gebretensae, Daniel Asmelash