Synthesis of multi-color fluorine and nitrogen co-doped graphene quantum dots for use in tetracycline detection, colorful solid fluorescent ink, and film.

Please login or register to bookmark this article
Bookmark this %label%

Fluorine-doped graphene quantum dots have unique chemical bonds and charge distribution, which can bring unexpected properties compared to other common atom-doped graphene quantum dots. In the present work, fluorine and nitrogen co-doped graphene quantum dots (F, N-GQDs) are synthesized from levofloxacin via a simple hydrothermal method. Systematic studies demonstrate that F, N-GQDs can emit various fluorescence with the wavelength ranging from blue to green by dispersing F, N-GQDs into different solvents. Moreover, multi-color fluorescence is available by simply changing the concentration of F, N-GQDs. In addition to these unique characteristics, F, N-GQDs also exhibit a sensitive fluorescence response to tetracycline with an ultralow detection limit of 77 nM in water. Because of high photostability and high quantum yield, the F, N-GQDs are exploited as a unique invisible ink, which is printable and writable on paper. Meanwhile, based on the solvatochromism of F, N-GQDs, we realized the color adjustable fluorescent ink. Finally, large-area flexible multi-color fluorescent films are realized. Our synthesized F, N-GQDs, with tunable fluorescence in wavelength and intensity, have numerous opportunities for optical molecular sensors, information security, flexible optics, and others.

View the full article @ Journal of Colloid and Interface Science
Get PDF with LibKey

Authors: Changxing Wang, Da Chen, Yongsheng Yang, Siyuan Tang, Xiameng Li, Feng Xie, Gang Wang, Qinglei Guo