Semi-mechanistic PK/PD model to assess pulmonary targeting of beclomethasone dipropionate and its active metabolite.

Please login or register to bookmark this article
Bookmark this %label%

The objective of this study was to describe the pulmonary targeting of beclomethasone dipropionate (BDP) and its active metabolite beclomethasone 17-monopropionate (BMP) in rats using a semi-mechanistic PK/PD model.Rat plasma and tissue concentrations of BDP and BMP, and tissue receptor occupancies of BMP after systemic and pulmonary delivery of BDP and BMP were integrated in a newly developed semi-mechanistic PK/PD model.After IV administration of BDP, 95.4% of BDP was converted to BMP, while after pulmonary delivery of BDP, 46.6% of deposited BDP was absorbed as BMP. The developed semi-mechanistic PK model described plasma and tissue concentrations of BDP and BMP as well as receptor occupancies sufficiently well. The model incorporated dissolution, metabolic activation, and drug absorption processes to describe the local fate of BDP and BMP after systemic and pulmonary delivery. Dissolution rate constants of BDP and BMP were estimated to be 0.47/h and 2.01/h, respectively, and the permeabilities in central lung were estimated to be 15.0 and 2.9 × 106 cm/s for BDP and BMP, respectively. The EC50 of the binding of BMP with the receptor was estimated to be 0.0017 ng/ml. Overall, receptor occupancies in the lung were more pronounced than those in the systemic circulation after pulmonary delivery of BDP or BMP. Simulations using the developed semi-mechanistic PK/PD model demonstrated that a slow dissolution rate and low permeability can improve pulmonary targeting.A semi-mechanistic model was developed to describe the fate of an inhaled glucocorticoid pro-drug and its active metabolite in lung and the systemic circulation, both after pulmonary and systemic circulation, thereby facilitating the understanding of the complex interplay between drug, prodrug and pharmacodynamic properties for quantifying the degree pulmonary targeting.

View the full article @ European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
Get PDF with LibKey