Joint exposure to various ambient air pollutants and incident heart failure: a prospective analysis in UK Biobank.

Please login or register to bookmark this article
Bookmark this %label%

Little is known about the relation between the long-term joint exposure to various ambient air pollutants and the incidence of heart failure (HF). We aimed to assess the joint association of various air pollutants with HF risk and examine the modification effect of the genetic susceptibility.This study included 432 530 participants free of HF, atrial fibrillation, or coronary heart disease in the UK Biobank study. All participants were enrolled from 2006 to 2010 and followed up to 2018. The information on particulate matter (PM) with diameters ≤2.5 µm (PM2.5), ≤10 µm (PM10), and between 2.5 and 10 µm (PM2.5-10) as well as nitrogen oxides (NO2 and NOx) was collected. We newly proposed an air pollution score to assess the joint exposure to the five air pollutants through summing each pollutant concentration weighted by the regression coefficients with HF from single-pollutant models. We also calculated the weighted genetic risk score of HF. During a median of 10.1 years (4 346 642 person-years) of follow-up, we documented 4201 incident HF. The hazard ratios (HRs) [95% confidence interval (CI)] of HF for a 10 µg/m3 increase in PM2.5, PM10, PM2.5-10, NO2, and NOx were 1.85 (1.34-2.55), 1.61 (1.30-2.00), 1.13 (0.80-1.59), 1.10 (1.04-1.15), and 1.04 (1.02-1.06), respectively. We found that the air pollution score was associated with an increased risk of incident HF in a dose-response fashion. The HRs (95% CI) of HF were 1.16 (1.05-1.28), 1.19 (1.08-1.32), 1.21 (1.09-1.35), and 1.31 (1.17-1.48) in higher quintile groups compared with the lowest quintile of the air pollution score (P trend <0.001). In addition, we observed that the elevated risk of HF associated with a higher air pollution score was strengthened by the genetic susceptibility to HF.Our results indicate that the long-term joint exposure to various air pollutants including PM2.5, PM10, PM2.5-10, NO2, and NOx is associated with an elevated risk of incident HF in an additive manner. Our findings highlight the importance to comprehensively assess various air pollutants in relation to the HF risk.

View the full article @ European heart journal
Get PDF with LibKey